
J Math Chem (2009) 46:1112–1121
DOI 10.1007/s10910-008-9496-y

ORIGINAL PAPER

Generating water clusters and other directed graphs

Gunnar Brinkmann

Received: 16 June 2008 / Accepted: 17 October 2008 / Published online: 13 November 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper we will describe an efficient method to generate directed
graphs with bounded in- and out-degree. Though developed for the special case of
water clusters, which can be modelled as directed graphs with indegree and outdegree
at most 2 that have no two directed edges with the same endpoints, the algorithm is
also applicable and implemented in the more general context.

Keywords Water · Cluster · Directed graph · Isomorphism · Degree

1 Introduction

Water molecules can bond to each other by hydrogen bonding. This bond is between
a proton-donor and a proton acceptor, so it is equipped with a sense of direction.
Describing this bond by a directed edge from the donor to the acceptor (see Fig. 1)
translates a cluster of n water molecules to a directed graph with n vertices. Every
molecule can give and accept two protons, but no molecule can have two bonds with
the same other molecule (no matter whether it would donate two protons or donate
one and accept one). We can characterize the directed graphs that model water clusters
as follows:

Definition 1 A water cluster is a directed graph with maximum outdegree at most 2
and maximum indegree at most 2 which has no two directed edges with the same sets
of endpoints.

G. Brinkmann (B)
Department of Applied Mathematics & Computer Science, Ghent University, Krijgslaan 281-S9,
9000 Ghent, Belgium
e-mail: Gunnar.Brinkmann@UGent.be

123

J Math Chem (2009) 46:1112–1121 1113

Fig. 1 A hydrogen bond
encoded as a directed edge

B

A
A

B

++

++

−−

−−

model:

In this article we will concentrate on the algorithmic aspects of this problem. We
will not describe the physico-chemical background of waterclusters which has been
discussed by other authors in previous papers. The reader is referred to e.g. [1] for an
introduction and other aspects of the graph theory of water clusters.

The first algorithm to generate water clusters was by Miyake and Aida [2] and was
used to enumerate all clusters on up to 8 molecules. Later this approach was improved
by D. Vukičević et al. who could enumerate all clusters with up to 12 molecules [3,4].
The approach described in this article is several orders of magnitude faster than the
faster one of these approaches. It takes 19 min on a single processor 2.6 GHz Pentium
PC while the program by Vukičević et al. took 366 h on a cluster with 16 Pentium
2.4 GHz processors. The load factor is not given, but the 366 h given by the authors
are the time between the start of the first part of the computation and the end of the
last part—it is not the sum of the running times on the various processors.

Already at the time when the first generation programs for water clusters were
published, a much faster and more general algorithm and program directg developed
by B.D. McKay existed (see http://cs.anu.edu.au/~bdm/nauty/). Directg computes all
non-isomorphic directed graphs for a given set of underlying undirected graphs. These
underlying graphs can be generated by the program makeg by the same author. Already
the most simple way to adapt this program to the needs of generating water clusters—
filtering the output of directg to suppress graphs with too high in- or out-degree and
without applying any early bounding criteria—gives a much faster program than those
by Miyake and Aida, resp. Vukičević et al. (20 h for 12 vertices on a single proces-
sor 2.6 GHz Pentium PC). Including the degree restriction already in the generation
process would further improve the performance of directg.

The algorithm and program described here will be even faster than directg also
for cases without degree restrictions, so using branch and bound techniques and look
aheads in directg to deal with the degree restrictions of water clusters without other
modifications to the algorithm would not lead to a program as fast as the one described
here.

2 The algorithm

All approaches to generate water clusters use the same basic strategy: generate all
underlying graphs and direct the edges in all possible ways that give non-isomorphic
graphs that fulfill the definition. The algorithm described here is about how to assign
these directions as efficiently as possible.

123

http://cs.anu.edu.au/~bdm/nauty/

1114 J Math Chem (2009) 46:1112–1121

Fig. 2 An undirected graph that
fulfills the characterization in
Lemma 1 (a) for indegree at
most 2 and outdegree at most 3
but does not allow any valid
assignment of directions. This
can be seen because the
subgraph obtained by removing
the degree 1 vertex does not
fulfill the requirements of the
characterization

Definition 2 We call a directed graph with maximal indegree at most x and maxi-
mal outdegree at most y that has no parallel directed edges (but possibly oppositely
directed edges with the same endpoints) an (x, y)-digraph. An (x, y)-digraph with no
two edges with the same endpoints is called a simple (x, y)-digraph.

In case of oppositely directed edges with the same endpoints we assume the under-
lying undirected graph to be the graph where these two directed edges correspond to
a single undirected edge.

Lemma 1 (a) The underlying graph G of an (x, y)-digraph with n vertices is a
(simple) graph with n vertices, maximum degree �(G) ≤ x + y and at most
min{x, y} ∗ n edges.

(b) An undirected graph G with �(G) ≤ 2 ∗ min{x, y} is the underlying graph of a
simple (x, y)-digraph.

(c) In case x = y each undirected graph with maximum degree at most x + y = 2x
is the underlying graph of a simple (x, y)-digraph.

Proof Part (a) is obvious and part (c) a direct consequence of (b), so we just have to
prove part (b).
Let z = min{x, y}. A graph G with maximum degree at most 2z is a subgraph of a
2z-regular graph Ḡ. But Ḡ has an Euler-cycle and directing the edges forward along
this cycle gives a valid assignment of edges of G. ��

Part (c) gives a justification of the approach using the undirected graphs described
by Lemma 1 as the basis for assigning directions especially in case of x = y and
therefore also for water clusters. If a large fraction of the generated undirected graphs
would not lead to any (x, y)-digraph, this approach would be less efficient.

But though in case x �= y there are undirected graphs that fulfill the requirements
of Lemma 1 (a) but do not allow a valid assignment of directions (see Fig. 2) also
in these cases the ratio of undirected graphs that do not allow a valid assignment of
directions was very small—usually around 2% to 3% in the cases observed.

In fact the situation in Fig. 2 with a subgraph with too many edges is the only possi-
bility that an underlying graph cannot be directed, as stated explicitly in the following
lemma.

Lemma 2 If for an undirected graph G every subgraph G ′ = (V ′, E ′) has the
property that �(G ′) ≤ x + y and |E ′| ≤ min{x, y} ∗ |V ′|, then the edges can be
directed in a way to form an (x, y)-digraph.

123

J Math Chem (2009) 46:1112–1121 1115

Proof In Lemma 1 this is already proven for x = y so assume x > y > 0. The case
x < y can either be done analogously or can be obtained from x < y by just reversing
directions.

We prove it by induction in the number d of edges that have already been assigned
a direction. It is obvious that for the first edge the direction can be chosen arbitrarily
without violating the degree conditions, so assume that d edges are already directed
and an edge e = {a, b} is given that is to be directed.

In the first step we want to make sure that one of the vertices has an outdegree
smaller than y. If this is already the case—w.l.o.g. for vertex a—we are done (with
this step).

Otherwise both vertices have an indegree smaller than x because the degrees are
at most x + y and one adjacent edge is still undirected. Let Va, Vb be the sets of
vertices that are reachable from a, resp. b from a directed path. These sets can of
course intersect or even be identical. If Va and Vb both induce subgraphs of already
directed edges with precisely |Va | ∗ y, resp |Vb| ∗ y edges, the set Va ∪ Vb would have
|Va | + |Vb| − |Va ∩ Vb| vertices and |Va | ∗ y + |Vb| ∗ y − |E(Va ∩ Vb)| edges with
|E(Va ∩ Vb)| the number of already directed edges with both endpoints in Va ∩ Vb.
So by assumption |E(Va ∩ Vb)| ≤ |Va ∩ Vb| ∗ y and therefore the number of edges is
at least |Va | ∗ y + |Vb| ∗ y − |Va ∩ Vb| ∗ y. But then the subgraph induced by Va ∪ Vb

and including directed and undirected edges (so also e) violates the conditions in the
lemma.

So assume that for Va we have that the induced subgraph contains less than |Va | ∗ y
edges. Then there is a vertex v that is reachable by a directed path from a and has an
outdegree less than y. Now we can reverse directions along this path, leaving indegree
and outdegree unchanged at all interior vertices, increasing the outdegree of v and
decreasing the outdegree of a.

So in any case the edge {a, b} can now be directed a → b unless the indegree of b is
x . But then we can apply the same argument with antidirected paths (paths that would
be directed if all directions would be reversed) starting at b. Since x > y we can now
not only conclude that one of the subgraphs induced by the correspondingly defined
|Va | and |Vb| has less than |Va | ∗ x , resp |Vb| ∗ x edges, but both—so especially the
one induced by Vb. Note that the outdegree of a is not increased during this operation,
so that afterwards we can direct the edge a → b completing our proof. ��

An obvious, but important observation is the following lemma:

Lemma 3

• An isomorphism between two directed graphs induces an isomorphism of the
underlying undirected graphs.

• If we start with an underlying graph and assign directions to the edges in two
different ways (that is: there is at least one edge where the direction was assigned
differently), any isomorphism of the resulting directed graphs induces a nontrivial
automorphism of the graph.

This lemma was also used by earlier approaches. It implies that we do not need
any isomorphism rejection in case of underlying graphs with a trivial symmetry.

123

1116 J Math Chem (2009) 46:1112–1121

Two different ways to assign directions will always result in two non-isomorphic
graphs. This is a special case of an isomorphism rejection technique called homo-
morphism principle (see [5]). A crucial step in this algorithm is to reach this ideal
situation by splitting the 2-step construction (first generating underlying graphs and
then directing them) into several steps. This technique is also responsible for the high
generation rate in [6].

Because we start with an undirected graph G and assign directions to edges, we
can interpret this as working with a labelling l() of the edges. An edge {x, y} can be
labelled 0 (not yet decided), (x, y) (directed from x to y), (y, x) (directed from y to x)
and {y, x} (assigned two oppositely directed edges). In case of water clusters the last
label {y, x} may not be used. We denote such edge-labelled graphs as pairs (G, l) and
will refer to the edges labelled 0 as undirected. The set of edges with nonzero label is
called the domain of the labelling and we write dom(l).

Definition 3 A mapping f : G → G ′ between two edge-labelled graphs is called
an isomorphism of the graphs if it is an isomorphism of the underlying unlabelled
graphs and for every edge {x, y} the relation between the label l of {x, y} and l ′ of
{ f (x), f (y)} is
l = 0 ⇔ l ′ = 0
l = (x, y) ⇔ l ′ = (f (x), f (y))

l = (y, x) ⇔ l ′ = (f (y), f (x))

l = {y, x} ⇔ l ′ = { f (y), f (x)}

If G = (V, E) is a graph and l, l ′ are edge labelings so that for every edge e ∈
dom(l) we have l(e) = l ′(e), then we call l ′ an extension of l.

Definition 4 An edge-labelled graph (G, l) is called closed if for all extensions l1, l2
of l any isomorphism between (G, l1) and (G, l2) induces an automorphism of (G, l).

The edge-labelled graph (G, l) with l(e) = 0 ∀e ∈ E is an example of a closed
edge-labelled graph. In case of closed graphs with trivial automorphism group, we can
proceed like in the special case of underlying undirected graphs with a trivial automor-
phism group: we can direct the not yet directed edges in every way compatible with
the degree restrictions without having to test any isomorphisms—all directed graphs
will be non-isomorphic. We split the labelling process into several steps as follows:
For an undirected graph G = (V, E) we construct a series of labelings l1, . . . , lk so
that dom(l1) = ∅, dom(lk) = E , for 1 ≤ i ≤ k, (G, li) is closed and for 1 ≤ i < k
the labelling li+1 is a nontrivial extension of li .

Lemma 4 Let (G, l) be a closed edge-labelled graph with G = (V, E) and D =
dom(l). Furthermore let D′ be an orbit of edges under the automorphism group of
(G, l) and l(e) = 0 for all edges in D′.

If l ′ is an extension of l so that dom(l ′) = D ∪ D′, then (G, l ′) is also a closed
edge-labelled graph.

Proof Assume extensions l1, l2 of l ′ and an isomorphism f : (G, l1) → (G, l2) are
given.

123

J Math Chem (2009) 46:1112–1121 1117

Because (G, l) is closed, f () induces an automorphism of (G, l). So f () maps
edges in D′ onto other edges in D′. Since D′ ⊆ dom(l1), dom(l2) this means that f ()

induces an automorphism of (G, l ′). So (G, l ′) is closed. ��
Now our strategy is clear:

a.) Generate all underlying undirected graphs G = (V, E) with the properties given
in Lemma 1.

b.) For each G = (V, E) start with l(e) = 0 ∀e ∈ E and repeat the following
loop until dom(l) = E :
b1.) Compute the automorphism group � of (G, l).
b2.) If � is trivial, leave the loop and continue extending l without any isomor-

phism rejection.
b3.) Else compute the orbits of undirected edges under � and choose a smallest

orbit D′.
b4.) If D = dom(l) then compute all extensions l ′ of l with dom(l ′) = D ∪ D′

that give non-isomorphic edge-labelled graphs.
• If dom(l ′) = E output this graph.
• else repeat the loop for l = l ′.

For step a.) we use the program makeg (see [7]) and for step b1.) we used the
program nauty (see [8]).

The only step for which it is not immediately clear how it can be done is b4.).
In case of an underlying graph with an automorphism group that acts transitively

on the edges, this step contains the whole labelling process. The efficiency of the
approach is based on the fact that cases where step b2.) cannot be applied or can only
be applied when almost all edges are already labelled are very rare. For most classes
of graphs the ratio of graphs with trivial group tends to 1 and already for small vertex
numbers the ratio of graphs with few symmetries is very large. Of course the ratios
vary depending on the class of graphs we are generating. For the class we are most
interested in—water clusters—the relative amount of directed graphs that come from
closed graphs with trivial symmetry and no edges directed, resp. at most 30% of the
edges directed is depicted in Fig. 3. Note that also in the approach described here,
most of the time is spent on dealing with graphs with symmetries: although more than
83% of the water clusters on 12 vertices come from underlying graphs with a trivial
symmetry, only 20% of the time is spent on assigning labels to these and 80% of the
time to label the remaining 17% that come from underlying graphs with symmetries.

To assign directions to edges of a chosen orbit, McKay’s canonical construction
path method (see [7]) is used. It is a standard technique, so it will just be sketched here.
Assume we have a closed partially directed graph (G = (V, E), l) with D = dom(l)
and an orbit D′ of undirected edges is given. We want to compute all isomorphism
classes of graphs (G, l ′) so that l ′ is an extension of l and dom(l ′) ⊆ D ∪ D′. Let us
call this class X (G, l, D′).

We will generate the class by starting with (G, l) and assigning directions to one
edge at a time. The canonical construction path method now requires

a.) to assign a unique ancestor with one directed edge less to every graph in
X (G, l, D′) except for the base graph (G, l).

123

1118 J Math Chem (2009) 46:1112–1121

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 6 7 8 9 10 11 12

number of water molecules

no edges directed

at most 30% of the edges directed

Fig. 3 The percentage of water clusters coming from a closed graph with 12 vertices and no, resp. at most
30% of the edges directed

b.) to make sure that from no graph in X (G, l, D′) two isomorphic ancestors are
generated.

Part a.) is implemented by canonically choosing an orbit of directed edges in D′.
The ancestor is the graph obtained by removing the direction of one of these edges.
Note that the isomorphism class of the graph obtained this way does not depend on
which edge in the orbit is chosen. The graph is accepted as being properly generated
if and only if the last directed edge belongs to the canonical orbit. In order to do this
efficiently, first some easily computable vertex invariants are used to assign numbers
to the directed edges in a way that is invariant under automorphisms. These are based
on the in- and out-degree of the vertices and orbit numbers of the vertices assigned by
nauty() for the graph (G, l). In case this cheap criterion already gives a unique edge
in D′ with a minimal invariant, we have found our canonical edge and therefore our
ancestor. Otherwise we have to use nauty() to compute a canonical labelling and the
automorphism group in order to decide on an orbit. As a means to speed up the com-
putation, orbit numbers determined by nauty() for (G, l) are used as vertex colours
for the graph (G, l ′) that is tested for canonicity.

Part b.) is implemented by computing for every graph (G, l ′) that is to be extended
the automorphism group and the orbits of undirected edges in D′ under this group.
Then only one edge in every orbit is chosen to be directed and produce a descendant
with one edge more. It is easy to see that directing another edge in the same orbit
instead of the chosen one would give an isomorphic result (so we don’t miss graphs).
On the other hand it can be seen that if two descendants of (G, l ′) would be isomorphic

123

J Math Chem (2009) 46:1112–1121 1119

Fig. 4 A partial assignment of
directions for water clusters that
cannot be completed ?

and both accepted, the isomorphism can be chosen in a way that the edges that were
the last ones to be directed are mapped onto each other. This induces an automorphism
of (G, l ′) mapping the two undirected edges onto each other—so two edges from the
same orbit would have been assigned directions.

This gives the following lemma:

Lemma 5 For a given closed graph (G, l) and orbit D′ of undirected edges, the
described method generates exactly one representative for every isomorphism class
of graphs in X (G, l, D′).

According to Lemma 1, in case of water clusters every undirected graph generated
can be assigned directions to form a water cluster. But for degree restrictions with
different in- and out-degrees this is not true and even for water clusters not every
partial assignment of directions can be completed (see Fig. 4).

Computing expensive criteria to determine whether a partial assignment of direc-
tions can be completed, would slow down the computations. On the other hand it
is obvious that the chance to be able to extend a partial assignment of directions to
still undirected edges around vertices with degree d is higher for small d—in case of
d ≤ min{i, o} (with i the bound for the indegree and o the bound for the outdegree)
it is even sure that the assignment can be extended to all edges around the vertex.

In case of symmetries, the order in which edges to direct are chosen is given by the
isomorphism rejection routines, but in case of trivial symmetry of the closed graph,
we can freely choose the order in which we direct the remaining undirected edges.
We place the edges on a stack (so the edges that are first placed are the last ones to be
directed) in the following way:

• Repeat until the graph is empty:

– Choose a vertex v of minimum degree.
– Place all edges incident with v on the stack.
– Remove v and all incident edges from the graph.

For water clusters with 12 vertices, this order of assigning directions to edges in graphs
with trivial symmetry was 2.8 times faster than a random order or a lexicographic order
of the edges. This factor is increasing with the number of vertices.

123

1120 J Math Chem (2009) 46:1112–1121

3 Testing

The output of the program water based on the described algorithm was tested in
various ways. First of course the previously known results for water clusters on up to
12 vertices were compared.

In addition, directg was used to assign directions in every possible way to all graphs
on up to 7 vertices and all bipartite graphs on 8 or 9 vertices. The output was analysed
to determine the numbers of directed graphs based on these classes for all combina-
tions of maximal indegree, maximal outdegree and presence of edges directed in both
directions. Then for every combination water was started and the number of graphs
generated for this restricted class was compared. Note that the whole class is also
one of the cases tested. In total 560 cases were tested and the results were in perfect
agreement.

It should be noted that the test against directg is not completely independent—
both programs use nauty and makeg. But since nauty and makeg are widely used and
therefore extensively tested, this overlap can be accepted.

4 Results

The most interesting numbers are surely those of water clusters. These are given in
Table 1. Assuming an average load factor of 10 of the cluster on which the

Table 1 The numbers of water clusters and underlying graphs and the running times of water on an Intel
Xeon processor with GNU/linux and 2.66 GHz

Molecules Undirected graphs Water clusters Time (s)

1 1 1

2 1 1

3 2 5

4 6 22

5 21 161

6 78 1,406

7 353 14,241 Miyake, Aida

8 1,929 164,461 0.07

9 12,207 2,115,335 1.1

10 89,402 29,903,139 5.7

11 739,335 460,066,726 23 Vukičević et al.

12 6,800,637 7,644,586,673 644

13 68,531,618 136,336,779,596 5.680

14 748,592,936 2,596,190,669,230 61.800

15 8,788,983,173 52,552,267,768,902 1.201.300

16 110,201,690,911 1,126,421,027,176,730

The jobs were run on an 8 processor machine and split into 6 parts for 14, into 60 parts for 15 and into 600
parts for 16 vertices. The times given are the sums of the times of the parts

123

J Math Chem (2009) 46:1112–1121 1121

Table 2 The numbers of directed graphs without degree restrictions for some classes of underlying graphs
and the running times of water and directg

Underlying class of
undirected graphs

Number of directed
graphs

Water
(seconds)

Directg
(seconds)

Factor

|V | = 6 1.540.944 0.36 10.8 30

|V | = 7 882.033.440 32.8 12,023 366

|V | = 8, bipartite 5.578.632 2.3 54.3 23

|V | = 9, � ≤ 3 65.917.619 3.5 45.7 12.8

|V | = 10, bipartite and � ≤ 3 53.611.591 5.1 65.3 12.7

|V | = 11, bipartite connected, � ≤ 4 174.531.268.392 1,985 144,091 72.6

The times are given for a 2.6 GHz Pentium 4 processor with GNU/linux. In cases like these where no
degree bounds are given, the program can sometimes determine the numbers of graphs without actually
constructing them, but for the timings all graphs were explicitly formed in memory

computations for [3] were performed, water is approximately 10.000 times faster
for 12 vertices.

Because directg is designed for more general purposes and not equipped with an
efficient test of the degree restrictions already during the construction, comparing
water with directg for cases with degree restrictions would give a wrong impression.
So Table 2 only gives a comparison for classes without degree restrictions.

The source code of the program water can be obtained for academic purposes free
of charge from the author.

References

1. J.L. Kuo, J.V. Coe, S.J. Singer, Y. Band, L. Ojamäe. On the use of graph invariants for efficiently
generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J.
Chem. Phys. 114, 2527 (2001)

2. T. Miyake, M. Aida. Enumeration of topology-distinct structures of hydrogen bonded water clusters.
Chem. Phys. Lett. 363, 106 (2002)

3. D. Vukičević, T. Grubeša. A. Graovac. An efficient method to enumerate topologically distinct clusters
of hydrogen-bonding in water molecules. Chem. Phys. Lett. 416, 212 (2005)

4. D. Vukičević, A. Graovac. An algorithm to enumerate a special class of digraphs: application to water
clusters. Croatica Chemica. Acta 2(81), 347 (2008)

5. G. Brinkmann. Isomorphism rejection in structure generation programs., in ed. by P. Hansen, P.W.
Fowler, M. Zheng. Discrete Mathematical Chemistry. vol. 51 of DIMACS Series on Discrete Mathe-
matics and Theoretical Computer Science (American Mathematical Society, 2000), pp. 25–38

6. G. Brinkmann, A.A. Dobrynin, A. Krause, Fast generation of polycyclic chains with arbitrary ring
sizes. MATCH Commun. Math. Comput. Chem. 41, 137 (2000)

7. B.D. McKay, Isomorph-free exhaustive generation. J. Algorithm. 26, 306 (1998)
8. B.D. McKay, Practical graph isomorphism. Congressus Numerantium 30, 45 (1981)

123

	Generating water clusters and other directed graphs
	Abstract
	1 Introduction
	2 The algorithm
	3 Testing
	4 Results
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

